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Motivation 

It is hard to imagine the modern world without machine learning algorithms, which are 

used ubiquitously in many industries. For instance, banks use predictive algorithms to score their 

clients and assess risks. IT giants such as Google and Amazon use complex Deep Neural 

Networks as essential components of their services - Google Translate, Alexa, Google Photos, 

self-driving cars, and others. As our lives become more digital, cybersecurity becomes more 

necessary. An extremely flexible tool, machine learning is used in many different contexts, from 

simple spam filters to sophisticated methods to detect suspicious activity, spotting attacks and 

blocking any malicious intent. There are many reasons why machine learning and deep learning 

are successful in such a dynamic field: automated algorithms are better adapted for rapid changes 

than heuristic expert-driven approaches, scalability, machine learning is more adaptable to new 

conditions than expert-driven approaches. 

Despite the obvious usefulness of machine learning algorithms, many challenges persist. 

One such challenge is prediction churn. Prediction churn is the discrepancy between the 

predictions made by the same model trained on different data samples and is defined as a 

proportion of mismatched data points to the number of overall predictions. Churn inevitably 

occurs during the iterative lifecycle of any predictive algorithm. However, mismatches may 

create many problems for the end users and can be detrimental for businesses that use such 

algorithms. As an illustration, Google faced backlash when their image classification system first 

identified photos as trees, but then classified them as cars after retraining the model on an 

extended dataset. In a different context, this undesired behavior could lead to serious negative 

consequences. 

Prediction churn can be further split into two categories. The first category is desirable or 

good churn. It happens when an updated model version makes correct predictions in cases where 

the old model makes mistakes. The second category is undesirable or bad churn. This churn is 

the most problematic since an updated model makes mistakes in cases where the old model’s 

predictions are correct. Our goal is to reduce undesirable churn, and at the same time, increase 

accuracy.  



Despite its significant importance, prediction churn is a highly overlooked research area. 

However, two approaches have been suggested to address prediction churn. The first approach 

reduces randomness in the training methodology to improve training stability. Sources of 

randomness in typical machine learning models include initialization, different training runs, 

choice of hyperparameters, and order of GPU computation. When randomness is reduced, 

prediction stability increases and prediction churn decreases. However, this approach requires 

solutions unique to the underlying model type. An alternative approach frames the problem from 

a label modification perspective and is model-agnostic. Instead of training on the true labels, the 

target model trains on a convex combination between hard one-hot encoded labels and soft labels 

produced by the auxiliary model.  

We pursue the following objectives within this paper: first, we will create a unified 

approach to conduct experiments and compare three known methods. Second, we will create a 

python package that generalizes our approach and is independent of underlying models. That will 

ensure that anyone  can use the package in their environment. Finally, we will work on a novel 

churn reduction method.  

Methodology 

Overview 

The goal of our work is to identify effective and easy-to-implement methods for reducing 

prediction churn independent of the underlying prediction model. To achieve this goal, we 

compare existing three methods: Label Smoothing (Bahri & Jiang, 2021), Anchor (Fard et al., 

2016) and Distillation (Jiang et al., 2021). Specifically, we're looking at the steps and parameters 

that need to be tuned to achieve churn reduction for each method. We compare the methods 

quantitatively using metrics defined in those methods' papers. All three methods involve 

modification of training labels using the older model (also referred to as the teacher model). 

Complexity of implementation 

Label Smoothing: Label smoothing uses the K-Nearest Neighbors algorithm on the logit layer 

of the predictions from the teacher model for finding similar data points to each data point. This 

method combines local and global smoothing to produce modified labels, see equation (1).  



𝑦𝑎,𝑏
𝐾𝑁𝑁 = (1 − 𝑎) ∗ 𝑦 + 𝑎 (𝑏 ∗ 1

𝐿⁄ ∗ 1𝐿 + (1 − 𝑏) ∗ 𝜂𝑘(𝑥))     (1) 

Here, 𝑎 is the tradeoff between true label 𝑦 and smoothed label, 𝑏 is the tradeoff between global 

smoothing and local smoothing of teacher’s k labels 𝜂𝑘(𝑥), 𝐿 is the number of classes and 1𝐿 is a 

vector of ones.  

Anchor: The anchor method works in two stages. First, it employs a Markov Chain Monte Carlo 

(MCMC) method to stabilize the training to imitate future changes in data.  Second, it 

implements stabilizing operators to mitigate actual changes from new data. In the scope of this 

work, we focus only on the stabilizing operator stage, using the operator: Regress to Corrected 

Prediction (RCP), see equation (2). 

�̃�𝑗 = {
𝛼 ∗ 𝑓(𝑥𝑗) + (1 − 𝛼) ∗ 𝑦𝑗 ,  𝑖𝑓 𝑦𝑗 ∗ 𝑓(𝑥𝑗) ≥ 0

𝜖 ∗ 𝑦𝑗 ,                                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
       (2) 

Here, 𝑎 is tradeoff between true label 𝑦𝑗 and teacher’s label 𝑓(𝑥𝑗) when teacher classification is 

accurate, and 𝜖 ∈ [0,1] is hyperparameter to smooth the true label if the teacher classification is 

wrong. 

Distillation: The concept of distillation (Ba & Caruana, 2013; Hinton et al., 2015) was originally 

developed   to use knowledge gained from complex networks to train smaller ones. The 

distillation method is essentially the training of student/downstream models using distilled labels. 

Distilled labels are a weighted combination of the true labels and labels from the older/teacher 

model, see equation (3). 

 

�̃�𝑗 =  𝜆 ∗ 𝑓(𝑥𝑗) + (1 − 𝜆) ∗ 𝑦𝑗                                            (3) 

Here, 𝜆 is tradeoff between true label 𝑦𝑗 and teacher’s label 𝑓(𝑥𝑗). 

Comparison 

We choose three different types of data and three metrics to measure the effectiveness of these 

methods. 

Data Sets: We have selected CIFAR 10 (Canadian Institute for Advanced Research) which is 

collection of 60,000 images (32 by 32 pixels) across ten classes, Online News Popularity which 

is set of 40,000 samples of tabular data with 60 features and two classes (popular or not), and 

IMDB which is textual data with of 60,000 online reviews and two classes (recommend or not). 



Models: We are using ResNet20 for image classification, Bidirectional LSTM for sentiment 

analysis (text classification), and a Feedforward network for tabular data classification. The 

employed models have sensible default hyperparameters in place, hence we are not conducting 

hyperparameter tuning. 

Churn is defined as the expected number of disagreements between two models, i.e., it is the 

average number of the labels misclassified between student and teacher, noted as 𝐶(𝑓𝑇 , 𝑓𝑆). 

Metrics:  

• Churn Ratio is calculated as 𝐶(𝑓0, 𝑓1) 𝐶(𝑓0, 𝑓2)⁄  where the old model is 𝑓0, new model 

trained with a methodology is 𝑓1 and the new model trained without any methodology is 

𝑓2 (also referred to as the baseline model). This is a measure of model improvement, 

where a lower ratio indicates that the model methodology reduces churn. 

• Good Churn is the number of correctly classified datapoints by student’s model which 

were misclassified by the teacher’s model; Bad Churn is the number of misclassified 

datapoints by student’s model which were correctly classified by the teacher’s model. 

• Win-Loss Ratio (WLR) captures tradeoff between good churn and bad churn as 

𝐺𝑜𝑜𝑑 𝐶ℎ𝑢𝑟𝑛 𝐵𝑎𝑑 𝐶ℎ𝑢𝑟𝑛⁄ . This is a measure of model performance, where values 

greater than one indicate the predominancy of good churns over bad churns.  

Results 

In this section, we are going to present the results of experiments carried out exclusively 

by distillation and anchoring methods. We did not experiment with the label smoothing method, 

since the complexity of hyperparameter tuning is relatively higher, which does not meet easily to 

implement criteria. Each experiment was run multiple times and standard errors were generated.  

 



 

Table 1: Results of Knowledge Distillation on Tabular Dataset 

 

Table 2: Results of Anchor RCP (epsilon=1) on Tabular Dataset 

 

Tables 1 and 2 show results from using Tabular Online News Popularity dataset using the 

Distillation and Anchor method, respectively. The model's accuracy seems invariant of the 

choice of churn reduction method. However, we do see changes in the churn metrics. Bad Churn, 

Good Churn, and Churn Ratio decrease with increase in Lambda and Alpha. This is because 

increasing these parameters pushes the model to learn more from the teacher model. Amongst 

the key metrics, Churn Ratio is minimized using Knowledge distillation with lambda = 0.8. 

Thus, we see knowledge distillation outperforms the anchor method. In WLR, we observe that it 

is maximized on intermediate values of Lambda and Alpha. This is because Lambda/Alpha too 

low Lambda/Alpha pushes the model to learn more from original labels, and thus there will be a 

significant amount of bad churn. When these parameters are too high, the model does not learn 

too much new information and thus the good churn is too low to cause a rise in WLR. Win Loss 

Ratio was maximized in Knowledge Distillation with lambda=0.6.   

 



 

Table 3: Results of Knowledge Distillation on Image Dataset 

 

 

Table 4: Results of Anchor RCP (epsilon=1) on Image Dataset 

 

Tables 3 and 4 show results from the CIFAR-10 image dataset. Here, once again, we see 

that accuracy does not change much from change in Alpha/Lambda. We see that knowledge 

distillation significantly outperforms the anchor method, both on WLR and on Churn Ratio. 

Churn Ratio is minimized at higher lambda (lambda=0.8), whereas WLR is maximized at 

intermediate values of Lambda (lambda=0.4). One theory on why distillation performs much 

better is that the distillation method was specifically developed and tested on neural networks 

with multi-class classification objectives, whereas the Anchor method was developed for 

machine learning methods in general, primarily for binary classification.  

 



 

Table 5: Results of Distillation on Text Dataset 

 

 

Table 6: Results of Anchor RCP (epsilon=1) on Text Dataset 

 

Tables 5 and 6 show results from the text dataset. Once again, distillation with high 

lambda performs best in reducing churn ratio. Similarly, within distillation, win loss ratio is 

minimized on an intermediate value of lambda=0.6. The anchor method fails to reduce churn 

ratio in this case. The behavior on win loss ratio is also different, with it being maximized on 

alpha=0.8. More investigation will be needed to understand why the anchor does not perform as 

expected here. The appendix contains more detailed results with a larger choice of 

hyperparameters. 

These results lead us to believe that going forward, knowledge distillation should be the 

preferred method of choice for reducing churn. Development of a novel approach to reducing 

churn warrants understanding what the distillation method does well that the anchor method does 

not. A caveat is that our experiments were restricted in scope and not exhaustive. Additionally, 

given that distillation does not significantly outperform anchor in the tabular binary classification 

task implies that we cannot generalize our results to conclude that distillation is always better 

than anchor. 



Other Objectives: 

Package development 

The main goal for this milestone is to create a python package. This package needs to be 

generalizable and model agnostic, meaning that the teacher and student models can be any 

python model without much constraint. Creating the package will require a few steps: software 

design, developing core methods compatible with PyTorch framework, extending the package to 

TensorFlow, and providing interface for further extensibility. 

In the software design stage, we will deliver an architectural structure. We will use UML 

(Unified Modeling Language) diagrams for documenting interclass connections. During this 

phase, we will restrict ourselves to the PyTorch library and make sure that the package works as 

expected. To make that happen, we will develop a set of unit and integration tests using the 

Pytest framework and the PyTorch internal testing functionality.  

We plan to extend the package to be compatible with TensorFlow to ensure that the 

solution covers more use cases. During this phase, we need to find differences and similarities 

between the two frameworks. It may require some refactoring in the initial version of the 

package. 

Finally, to make our framework truly general, we need to develop an extension-based 

API (Application Programming Interface) and provide a code interface. This step will guarantee 

that new frameworks will be compatible with our code base. 

Work on a novel method 

In this milestone, we have to develop a novel prediction churn reduction method. Having 

completed the experimentation on existing methods, and after having completed package 

creation, we have a strong foundation to start working on a new churn reduction approach. This 

milestone will be divided into sprints at the beginning of the second semester since we do not 

have enough information to develop a plan of actions at this stage.  
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Appendix 

 

 
   Table 7: Anchor results on image dataset 

 

 
   Table 8: Anchor results on tabular dataset 

 

 



 

 

 

 

 

 

 

 


