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Abstract 

Purpose 

The purpose of our project is to use computer vision algorithms to detect and segment a 
specific type of brain tumor – glioblastoma multiforme (GBM) – on clinical 3D MRI data. 

Materials and Methods 

We used a dataset collected and labelled by the Radiological Society of North America 
(RSNA) Brain Tumor Segmentation (BraTS) Challenge 2021, which included 1251 cases. 
We split these into 747 training samples, 244 validation samples, and 258 test samples. 
Each case represents a patient with a known glioblastoma multiforme and contains four 
MRI sequences that each provide different information about the anatomical situation in 
the brain and the tumor. A fifth dataset for each patient contains the ground truth 
segmentation from the RSNA. 

We trained three U-nets with different loss functions (cross-entropy, dice and weighted 
dice) to segment the healthy brain tissue and the different tumor regions using google 
colab pro with one GPU. 

Results 

We were able to implement a deep learning algorithm that reasonably identified the 
healthy tissue, the affected brain tissue (edema zone), the enhancing tumoral rim, and 
the tumor core with dice similarity scores up to 80.5%. 

Conclusion 

Our computer vision project was a success in segmenting glioblastoma multiforme from 
clinical MRI scans, though further refinement might be achieved with more GPU and 
implementation of transfer learning. 
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Abbreviations 

ASNR: American Society of Neuroradiology 

BraTS: Brain Tumor Segmentation 

GBM: Glioblastoma Multiforme 

i.v.: intra-venous 

MICCAI: Medical Image Computing and Computer Assisted Interventions 

mpMRI: multi-parametric Magnetic Resonance Imaging 

RSNA: Radiological Society of North America 

WHO: World Health Organization 

 

Introduction 

The Radiological Society of North America (RSNA), the American Society of 
Neuroradiology (ASNR) and the Medical Image Computing and Computer Assisted 
Interventions (MICCAI) combined forces a few years ago to collect a well annotated and 
standardized set of MRI images of a specific brain tumor for the purposes of being able 
to use it for machine learning tasks (1). 

As a result, the RSNA-ASNR-MICCAI Brain Tumor Segmentation (BraTS) 2021 
Challenge makes publicly available the largest and most diverse retrospective cohort of 
glioma patients (an initial, smaller dataset was published as a challenge in 2020). Ample 
manually annotated multi-institutional routine clinically acquired mpMRI scans of glioma 
are used as the training, validation, and testing data for the BraTS challenge. 
 
Specifically, the datasets used in the 2021 challenge were updated, since BraTS'20, with 
many more routine clinically acquired mpMRI scans from institutions that have not 
previously contributed to BraTS, increasing the demographic diversity of the represented 
patient population. 
Ground truth annotations of the tumor sub-regions are created and approved by expert 
neuroradiologists for every subject included in the training, validation, and testing 
datasets to quantitatively evaluate the predicted tumor segmentations, so every dataset 
includes the same type of tumor with features of glioblastoma. 
 

Background 

Glioblastoma multiforme (GBM) is a World Health Organization (WHO) grade IV 
(highest/least favorable grade) brain tumor which represents one of the most lethal 
human cancers, with a 5-year survival rate of only 7.2% (2). The incidence of GBM 
increases with age and shows the highest incidence in the 75–84-year-old age group in 
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the United States (3). The incidence is higher in men than women, as well as in 
Caucasians than in other ethnicities (4). 

Initial diagnosis is generally made, based on MRI imaging which can depict the contrast 
enhancing (“active”) tumor, the necrotic tumor center (dead tumor cells, due to rapid 
growth without sufficient blood supply) and the edema caused by the tumor infiltration of 
the surrounding healthy tissue (5-7). 

To do this, multiple imaging sequences are acquired before and after the patient receives 
intra-venous gadolinium-based contrast material. These sequences allow for the 
evaluation of different soft tissue properties. The two basic sequences that are acquired 
in virtually every MRI performed on patients are the T1- and T2-weighted sequences. T1-
sequences are often called the “anatomical” sequences because they show tissues 
similarly to what the actual anatomy looks like. They show fluids as “black”, while the T2-
sequence shows fluid as “white”. In addition, the T2-Fluid Attenuated Inversion Recovery 
FLAIR sequence, acquired for the imaging of GBM, suppresses the signal from 
cerebrospinal fluid, but not other fluid in the brain (e.g., from edema) and the T1-contrast 
enhanced sequence shows uptake of gadolinium in tumor tissue, especially when 
compared to the “native” (i.e., no i.v. contrast) T1-sequence (8). 

The first line therapy for GBM is usually surgery, followed by radio-chemotherapy. MRI-
guided surgery has been established as the method of choice for years. It relies on the 
ability of the surgeon to distinguish the tumor tissue from healthy brain tissue and is crucial 
for patient outcomes (9, 10). 

If we segmented glioblastoma multiforme based on MRI images, this could be helpful for 
surgical planning, e. g. when trying to determine how close the tumor is to important areas 
of the motor cortex. There is a gap between imaging specialists (radiologists), who are 
used to seeing 2-D images in sequence and transforming them into a 3-D image in their 
head while “reading” a scan and surgeons (neurosurgeons), who are used to seeing and 
touching the actual tumor tissue but not to translating 2-D image data into the 3-D tumor 
they are confronted with in the operating room (11, 12). 

The planning and surgical approach might benefit from better tumor segmentation, based 
on the pre-operative MRI scans. In addition, radiotherapy volumes could be planned in a 
more comprehensive manner and disease progression monitoring could be improved (13-
15). 

Data 

Imaging Data Description 

There were 1251 cases with labels provided in the BraTS 2021 challenge. We split these 
into 747 training samples, 244 validation samples, and 258 test samples (16). 

All BraTS multi-parametric magnetic resonance imaging (mpMRI) scans were available 
as NIfTI files (.nii.gz) and describe a) native (T1), b) post-contrast T1-weighted (T1Gd), c) 
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T2-weighted (T2), and d) T2 Fluid Attenuated Inversion Recovery (T2-FLAIR) volumes 
(17). They were acquired with different clinical protocols and various scanners from 
multiple data-contributing institutions but cleaned for the competition to all be in the same 
format (e.g., slice thickness, image matrix, de-identified). 

All the imaging datasets have been annotated manually, by one to four raters, following 
the same annotation protocol, and their annotations were approved by experienced 
neuro-radiologists. Annotations comprise the gadolinium-enhancing tumor (ET — label 4 
– metabolically active tumor tissue that takes up blood and thus gadolinium-based 
contrast), the peritumoral edematous/invaded tissue (ED — label 2 – brain tissue that is 
affected by the tumor/whole tumor), and the necrotic tumor core (NCR — label 1 – dead 
tumor cells; Figure 1). The ground truth annotation data were created after their pre-
processing, i.e., co-registered to the same anatomical template, interpolated to the same 
resolution (1 mm3) and skull-stripped. 

 

Figure 1: Demonstrates the visualization of our data. The T1 sequence shows anatomical 
detail and serves as the comparison for the T1 post-contrast sequence, which is acquired 
after all the other sequences after i.v. injection of gadolinium-based contrast material. The 
T2 and T2-FLAIR sequences are more fluid weighted and show the edema surrounding 
the tumor well. Our labels (segmentation) are also shown, with label 4 (enhancing tumor) 
in yellow, label 2 (edema zone/whole tumor) in turquoise and label 1 (necrosis/central 
zone) in dark blue. All healthy brain tissue (label 0) is purple like the background. 

Methods 

We used Deep Learning Methods specialized in the class of problems known as Semantic 
image Segmentation (18, 19). In semantic segmentation, the goal is to classify each voxel 
(3D pixel) in the input image (20, 21). We segmented each voxel in the MRI scan to be 
either gadolinium-enhancing tumor (ET — label 4), the edematous/invaded tissue (ED — 
label 2), the necrotic tumor core (NCR — label 1), and any tissue not belonging to the 
previous three, which is unaffected brain tissue (label 0). The architecture of the neural 
network was a U-Net (Figure 2). 
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Figure 2: Shows the structure of our U-net, with a 2D layout, though the third dimension is added 
at the very beginning, since we were dealing with voxels instead of pixels. The batch size was 4 
over 20 epochs with a softmax layer at the end. 

This resembles an encoder-decoder network where the first half of the network is a series 
of convolutional layers that decrease the size of the image after each layer while 
increasing the number of channels, culminating into a single dense layer composed of 
many channels and 1 pixel (22, 23). The second half of the network converts this dense 
layer back to an image of the dimension as that of the input image, but with the number 
of channels equal to the number of possible output classes. Thus, the final output 
represents the probabilities of each voxel belonging to each of the classes. Since we 
cannot expect the encoder-decoder mechanism to accurately form borders at the fine 
grained voxel-level, we add skip layer connections connecting across the “U” to guide the 
formation of voxel-level outputs (24-26). 

We trained these models on Google-Colab to take advantage of the free GPUs. In 
addition, as the computational cost went even higher when we tried to fine-tune our 
hyperparameters of U-Net, we upgraded to Google-Colab Pro in order to speed up the 
training process. Further, we took advantage of the well-established deep learning 
framework Tensorflow v2.8.0 (27, 28). We also used self-supervised learning techniques 
because our validation data did not include the segmentations that the training data had. 
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Thus, we performed a separate split to get test data out of our training data (where we 
need the ground truth segmentations) and add the validation data to our training data. To 
accommodate the fact that we had mixed data we used Transfer Learning for our self-
supervised learning (Figure 3 (29-31)). 

 

Figure 3: Shows the structure of our attempt at transfer learning using an auto-encoder structure. 
This shows our specifications highlighted in yellow and functions by compressing information 
during the encoding step and decompressing it during the decoding step. 

Our idea was to apply the characteristics of the Auto-Encoder to help us transfer the 4 
channels, which are our 4 MRI image datasets (T1, T2, T1-contrast, T2-FLAIR) into more 
representative features for the second half on the neutral network to provide more 
accurate segmentation results. However, we encountered overfitting issues and found 
that the validation loss was a lot higher than we expected. Thus, we tentatively considered 
this as future work and returned to the evaluation of the U-Net model. 

We evaluated the performance of our model using the same methods as the BraTS 
challenge applies to the submissions that they receive which is the Dice Similarity 
Coefficient, cross-entropy for each of the 4 labels. 
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We present three models in our final analysis, the main difference between these being 
the loss function. We used cross entropy loss, unweighted Dice loss, and weighted Dice 
loss, the weights being 1 for our 3 tumor labels and 0 for the background label. 

The Dice Similarity Coefficient is given by the formula: 

 

where A is the reference segmentation, Bm is the segmentation for the different models 
m, ∩ denotes the intersection of two sets and |⋅| is the cardinal of a set. This results in 
the ratio of how many voxels in Bm are correctly segmented (32). 

In addition, we submitted our segmentation to the continuing evaluation that BraTS 
provides and are hoping to be able to add our score from that to our report in the future. 
The winning entry in the 2021 challenge achieved a Dice score of ~92%, so we set that 
as our benchmark. 

Results 

We were able to implement a neural network based on U-net that performed with a Dice 
similarity score of 13.56 at segmenting the enhancing tumor tissue, 80.47 at segmenting 
the tumoral core necrosis zone and 72.09 at segmenting the edema zone (Table 1). 

Table 1: Shows the Dice similarity score comparison of our three U-net based models with 
different loss functions and the benchmark scores of the winners of the 2021 BraTS challenge. 

Model 
Healthy 
Tissue 

Necrotic 
Tumor Core 

Edema/Whole 
Tumor 

Enhancing 
Tumor 

Average 

Cross 
Entropy 

99.87 15.12 50.88 15.39 27.13 

Dice 99.83 7.96 52.53 2.59 21.03 

Weighted 
Dice 

17.12 80.47 72.09 78.35 76.97 

BraTS 
winner 

N/A 94.03 94.58 89.82 92.81 
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These results were achieved by the U-net with the weighted dice loss function and an 
exemplary output over several slices and including all of our models can be seen in 
Figure 4. 

 

Figure 4: Demonstrates several slices through the brain from bottom to top of the clinically 
acquired sequences (T1, T2, T1+contrast and FLAIR) and the ground truth segmentation (seg) as 
well as the three different models we trained to detect the different glioblastoma zones. The 
cross-entropy loss (bce-argmax) model partially detected the contrast enhancing tumor zone 
(blue) and correctly classified the healthy tissue (purple). All models correctly detected the healthy 
tissue (label 0, labeled with _prob0) but the dice model detected less of the normal anatomy as 
abnormal. The dice and weighted dice models (dice-argmax and wdice_model-argmax) 
performed well at detecting the enhancing tumor (yellow), the necrosis zone (dark blue) and the 
edema zone (light blue), as well as the healthy tissue (purple). They mostly match the ground 
truth segmentation. 

 

 



Fides, Jaya, Satvik, Tego  Spring 2022 

Conclusions 

Our computer vision project was a partial success based on the benchmark we were able 
to extract from the 2021 BraTS challenge. Our model was able to segment glioblastoma 
multiforme from clinical MRI scans, achieving an average Dice similarity score of 46%. 
This is somewhat worse than the benchmark of the competition winner from the German 
Cancer Research Institute, which is a very well-funded institution focused on cancer 
research, which was able to run their models locally and had participated in the challenge 
multiple years in a row (coming in 4th in the prior competition). This also reflects the 
evolution of methods over time. In one of the initial challenges in 2013, the winning team 
achieved an average Dice Score of 88% and in 2015 the runner up achieved a score of 
78% (1). 

When considering the clinical application, we believe our model using a non-weighted 
Dice loss function could be even more valuable than the model that came closer to 
achieving precise classification of each of the tumor zones. The surgeon will try to remove 
as much tumor as possible while preserving as much of the patient's brain function as 
possible. This means that the main focus of the segmentation as we see it is to distinguish 
diseased tissue from healthy tissue, so the surgeon can visualize where important brain 
areas (e.g., motor cortex) are located in relation to the tumor. The necrotic tumor center 
and the enhancing zone should be removed during surgery, but the high stakes decision 
lies in the separation of the whole tumor from healthy tissue. 

Since our segmentation of the whole tumor only reached reasonable levels, this can still 
be considered a limitation of our project and would be worthy of further improvement, 
possibly by integrating transfer learning and running the models locally. 

In conclusion, our U-net based models were able to achieve reasonable performance at 
brain tumor segmentation and could, with a few further improvements, be helpful in 
bridging the gap between radiology and neurosurgery in the future. 
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Tego Chang: preparing power point presentation for video 

Jaya Kahn: programming neural network for segmentation of brain tumors 

Satvik Kishore: programming neural network for segmentation of brain tumors 

Fides Schwartz: accessing the dataset, providing domain knowledge about MRI imaging 
of glioblastoma multiforme, spot-checking segmentation experiments, writing of final 
report 

 

 

References 

1. Pereira S, Pinto A, Alves V, Silva CA. Brain Tumor Segmentation Using Convolutional Neural 
Networks in MRI Images. IEEE Transactions on Medical Imaging. 2016;35(5):1240-51. 
2. Wu W, Klockow JL, Zhang M, Lafortune F, Chang E, Jin L, et al. Glioblastoma multiforme (GBM): 
An overview of current therapies and mechanisms of resistance. Pharmacological Research. 
2021;171:105780. 
3. Oszvald A, Güresir E, Setzer M, Vatter H, Senft C, Seifert V, et al. Glioblastoma therapy in the 
elderly and the importance of the extent of resection regardless of age. J Neurosurg. 2012;116(2):357-64. 
4. Davis ME. Glioblastoma: Overview of Disease and Treatment. Clin J Oncol Nurs. 2016;20(5 
Suppl):S2-8. 
5. Lee E, Ahn K, Lee E, Lee Y, Kim D. Potential role of advanced MRI techniques for the peritumoural 
region in differentiating glioblastoma multiforme and solitary metastatic lesions. Clinical radiology. 
2013;68(12):e689-e97. 
6. Gahramanov S, Varallyay C, Tyson RM, Lacy C, Fu R, Netto JP, et al. Diagnosis of pseudoprogression 
using MRI perfusion in patients with glioblastoma multiforme may predict improved survival. CNS 
oncology. 2014;3(6):389-400. 
7. Batash R, Asna N, Schaffer P, Francis N, Schaffer M. Glioblastoma multiforme, diagnosis and 
treatment; recent literature review. Current medicinal chemistry. 2017;24(27):3002-9. 
8. Radiopaedia. MRI sequences (overview) 2022 [Available from: 
https://radiopaedia.org/articles/mri-sequences-overview. 
9. Lacroix M, Abi-Said D, Fourney DR, Gokaslan ZL, Shi W, DeMonte F, et al. A multivariate analysis 
of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg. 
2001;95(2):190-8. 
10. Barone DG, Lawrie TA, Hart MG. Image guided surgery for the resection of brain tumours. 
Cochrane Database Syst Rev. 2014;2014(1):Cd009685. 
11. Krupinski EA. Current perspectives in medical image perception. Atten Percept Psychophys. 
2010;72(5):1205-17. 
12. Mascagni P, Longo F, Barberio M, Seeliger B, Agnus V, Saccomandi P, et al. New intraoperative 
imaging technologies: Innovating the surgeon's eye toward surgical precision. J Surg Oncol. 
2018;118(2):265-82. 
13. Hammoud MA, Sawaya R, Shi W, Thall PF, Leeds NE. Prognostic significance of preoperative MRI 
scans in glioblastoma multiforme. Journal of neuro-oncology. 1996;27(1):65-73. 



Fides, Jaya, Satvik, Tego  Spring 2022 

14. Mehta AI, Kanaly CW, Friedman AH, Bigner DD, Sampson JH. Monitoring radiographic brain tumor 
progression. Toxins. 2011;3(3):191-200. 
15. Kalpathy-Cramer J, Gerstner ER, Emblem KE, Andronesi OC, Rosen B. Advanced magnetic 
resonance imaging of the physical processes in human glioblastoma. Cancer research. 2014;74(17):4622-
37. 
16. America RSoN. Brain Tumor Segmentation Challenge 2021: RSNA; 2021 [Available from: 
https://www.rsna.org/education/ai-resources-and-training/ai-image-challenge/brain-tumor-ai-
challenge-2021. 
17. Bitar R, Leung G, Perng R, Tadros S, Moody AR, Sarrazin J, et al. MR Pulse Sequences: What Every 
Radiologist Wants to Know but Is Afraid to Ask. RadioGraphics. 2006;26(2):513-37. 
18. Jordan J. Semantic Segmentation 2022 [Available from: https://www.jeremyjordan.me/semantic-
segmentation/ 
19. Matcha CN. A 2021 Guide to Semantic Segmentation 2021 [Available from: 
https://nanonets.com/blog/semantic-image-segmentation-2020/. 
20. Wang P, Chen P, Yuan Y, Liu D, Huang Z, Hou X, et al., editors. Understanding Convolution for 
Semantic Segmentation. 2018 IEEE Winter Conference on Applications of Computer Vision (WACV); 2018 
12-15 March 2018. 
21. Garcia-Garcia A, Orts-Escolano S, Oprea S, Villena-Martinez V, Garcia-Rodriguez J. A review on 
deep learning techniques applied to semantic segmentation. arXiv preprint arXiv:170406857. 2017. 
22. Badrinarayanan V, Handa A, Cipolla R. Segnet: A deep convolutional encoder-decoder 
architecture for robust semantic pixel-wise labelling. arXiv preprint arXiv:150507293. 2015. 
23. Ye JC, Sung WK, editors. Understanding geometry of encoder-decoder CNNs. International 
Conference on Machine Learning; 2019: PMLR. 
24. Bell S, Zitnick CL, Bala K, Girshick R, editors. Inside-outside net: Detecting objects in context with 
skip pooling and recurrent neural networks. Proceedings of the IEEE conference on computer vision and 
pattern recognition; 2016. 
25. Mao X, Shen C, Yang Y-B. Image restoration using very deep convolutional encoder-decoder 
networks with symmetric skip connections. Advances in neural information processing systems. 2016;29. 
26. Intrator O, Intrator N. Interpreting neural-network results: a simulation study. Computational 
statistics & data analysis. 2001;37(3):373-93. 
27. Ertam F, Aydın G, editors. Data classification with deep learning using Tensorflow. 2017 
international conference on computer science and engineering (UBMK); 2017: IEEE. 
28. Pang B, Nijkamp E, Wu YN. Deep learning with tensorflow: A review. Journal of Educational and 
Behavioral Statistics. 2020;45(2):227-48. 
29. Noroozi M, Vinjimoor A, Favaro P, Pirsiavash H, editors. Boosting self-supervised learning via 
knowledge transfer. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 
2018. 
30. Hendrycks D, Mazeika M, Kadavath S, Song D. Using self-supervised learning can improve model 
robustness and uncertainty. Advances in Neural Information Processing Systems. 2019;32. 
31. Zhai X, Oliver A, Kolesnikov A, Beyer L, editors. S4l: Self-supervised semi-supervised learning. 
Proceedings of the IEEE/CVF International Conference on Computer Vision; 2019. 
32. Kopp FK, Daerr H, Si-Mohamed S, Sauter AP, Ehn S, Fingerle AA, et al. Evaluation of a preclinical 
photon-counting CT prototype for pulmonary imaging. Scientific Reports. 2018;8(1):17386. 

 


